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ABSTRACT  
Recognition of continuous human activities is investigated in unconstrained movement directions using 
multiple spatially distributed radar nodes, where activities can occur at unfavourable aspect angles or 
occluded perspectives when using a single node. Furthermore, such networks are favourable not only for the 
aforementioned aim, but also for larger controlled surveillance areas that may require more than just one 
sensor. Specifically, a distributed network can show significant differences in signature between the nodes 
when targets are located at long distances and different aspect angles. Radar data can be represented in 
various domains, where a widely known domain for Human Activity Recognition (HAR) is the micro-
Doppler spectrogram. However, other domains might be more suitable for better classification performance 
or are superior for low-cost hardware with limited computational resources, such as the Range-Time or the 
Range-Doppler domain. An open question is how to take advantage of the diversity of information 
extractable from the aforesaid data domains, as well as from different distributed radar nodes that 
simultaneously observe a surveillance area. For this, data fusion techniques can be used at both the level of 
data representations for each radar node, and across the different nodes in the network. The introduced 
methods of decision fusion, where typically one classifier operates on each node, or feature fusion, where the 
data is concatenated before using one single classifier, will be exploited, investigating their performance for 
continuous sequence classification, a more naturalistic and realistic way of classifying human movements, 
also accounting for inherent imbalances in the dataset.  

1.0 INTRODUCTION 

Radar networks have demonstrated their advantages in terms of adaptive ability, classification metrics, and 
tracking performance. This is achieved by increasing the overall information content thanks to multi-
perspective views on the scene and targets of interest. Nonetheless, the efficient and effective utilization of 
radars in a network relies on the aptitude to reliably combine the diverse information from the different 
sensors. Recently, distributed networks with multiple cooperating radars have attracted significant interest to 
address issues of micro-Doppler (mD spec.) signatures recorded at unfavourable aspect angles, occlusions, or 
of targets visible to just a few observer nodes [1]–[10].  

In this context, finding the best technique for the fusion of information from multiple radar nodes in a 
network in order to improve classification performances, remains an outstanding research problem. This is 
specifically important for the classification of sequences of continuous human activities. These are 
increasingly investigated in the literature, as opposed to more conventional classification of artificially 
separated activities recorded in isolation, as they are more realistic and natural [11]–[13].  

This paper investigates machine-learning classifiers applied on fused data from a network of nodes with the 
focus on feature fusion (‘early fusion’) and decision fusion (‘late fusion’) approaches, which are validated on 
an  openly available data set [14].  In this context, the majority of research work has focused mostly on the 
micro-Doppler (mD) spectrogram as the data format of interest, while this work exploits the following 
domains additionally, namely the range-Doppler (RD), Fourier synchro-squeezed transform (FSST) 
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spectrum, and the range-time (RT) map. Information fusion of these data domains is investigated in this 
paper jointly with radar node fusion across the network. It should be noted that this problem of efficient and 
effective data fusion across the different data formats and the different radar nodes in the network can be 
relevant not just to the context of human activity classification, but in any problem of surveillance and 
situational awareness when information from distributed radar nodes can be used. 

In terms of methodology, first the information from each of the aforementioned data domains is extracted by 
exploiting one-dimensional Principal Component Analysis (PCA) based on Singular Value Decomposition 
(SVD), a simple yet effective tool to extract features of images for classification. Fioranelli et. al. [3] show 
for instance the use of SVD-related features to analyse human multistatic walking scenarios with different 
angular trajectories. It is proposed that SVD can be used to extract the most relevant features from a mD 
spectrogram by using a limited number of left-sided singular vectors, that are related to the highest singular 
values. In [3] it is demonstrated that classification results of more than 90% and ideally of 96% for the best 
angle of the trajectory can be achieved, whilst using very few or even just the single highest related singular 
value.  

 

Figure 1: Schematic of the proposed methodology: the extracted data domains from the individual radar 
nodes are combined (‘data domain fusion’). Decision fusion or feature fusion is then applied to combine the 
information from the nodes. 

Then, in this work two-dimensional principal component analysis (2D PCA) based on matrix eigen-
decomposition is also investigated, which is shown to result in better accuracy and decreased computation 
time. For both feature extraction methods four machine learning classifiers, namely the decision tree (DT) 
classifier, the k-nearest neighbour (KNN) classifier, the naïve Bayes  (NB) classifier, and the support vector 
machine (SVM), are employed to evaluate the aforementioned fusion methods, with a schematic example 
shown in Figure 1.    

The rest of the paper is organized as follows. Section 2.0 shows the data domains including data 
processing parameters. Feature fusion and machine learning methods are provided in Section 3.0. The 
experimental results are presented in Section 4.0, and final remarks are given in Section 5.0. 

2.0 DATA DOMAINS 

Four different data domains are used, as shown in Figure 2, and extracted from each of the five nodes in the 
network. Specifically, range-Doppler (RD), the mD spectrogram (mD spec.), Fourier synchro-squeezed 
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transform (FSST) spectrum, and the range-time (RT) map are all extracted. The columns of Figure 2 show 
examples of the data domains from the 5 different radars, extracted at the same time stamp. The radar system 
used is a TimeDomain PulsOn radar system P410 with an ultra-wideband UWB chipset, operating at a centre 
frequency of 4.3 GHz and a bandwidth of about 2.2 GHz. The setup allows a range coverage of 4.38m, and a 
pulse repetition frequency of 122Hz which results in a unambiguous Doppler velocity of roughly 2.2 m/s 
[15], [16]. For more information about the recordings and the topology of the 5 distributed radar nodes in the 
network, references [17], [18] apply. 

 

Figure 2: Examples of the 4 radar data domains of namely, range-Doppler (RD), the mD 
spectrogram (mD spec.), Fourier synchro-squeezed transform (FSST) spectrum, and the range-
time (RT) map. For the latter three domains a sliding window of 200 samples (1.64s) was used. 

The RD processing is instead a FFT computed across the RT with the same 200 samples (1.64s).  

The following parameters are applied for further computation of the data domains:  
• STFT window (mD spec.): 64 samples (524ms) 

• Sliding window1 and RD parameter:  

• Window size:   200 samples (1.64sec) 

• Hop size:    25 samples (205ms) 

• Image size for classification:   224 x 224 pixel 

The extracted domain images after resizing are forwarded for feature extraction, as explained in Section 
3.0.   

3.0 FEATURE EXTRACTION AND MACHINE LEARNING 

3.1 Feature extraction using one-dimensional (1D) Principal Component Analysis (PCA) 

                                                      
1 Sliding window parameters apply to the mD spectrogram, the FSST, and the RT, respectively.   
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The Principal Component Analysis (PCA) based on Singular Value Decomposition (SVD) is utilised for four 
HAR typical radar domains, the range-Doppler (RD), micro-Doppler spectrogram (mD spec.), the Fourier 
synchro-squeezed transform (FSST) spectrum, and the range time (RT) to extract the features, suppress 
background noise, and reduce data space dimensionality at the same time [19]. 

In this work, PCA is applied on the down-sampled image domains, such as the ones shown in Figure 2, using 
a sliding window for mD spec., the FSST, and RT domain of 1.64s. For the RD domain, a window of the 
same duration is used for computation. The images of each domain are represented by the matrix, X , such 
that the SVD can be written as 

X=U TVΣ  (1) 

with U  and V  indicating  the left and the right singular matrices respectively, consisting of the left and 
right linearly independent singular vectors iu  and iv . Note that the image matrix, X , is generally full 
ranked. Thus, all iu  and iv  vectors are independent.  

The matrix Σ  contains the singular values i iiσ = Σ  on the diagonal, where i is the number of elements in 
Σ , and is equivalent to the image size of X . The diagonal entries iσ  are uniquely determined by X . The 
singular values are commonly used to determine a suitable number of left-sided singular vectors that are able 
to provide appropriate noise suppression and still contain the relevant features. A common practice is 
determining the "knee" or the "elbow" of the singular values, 1[ ,..., ]kσσ σ= , as shown in Figure 3, to 

truncate the matrices i iU ×∈ℜ , as i kU ×∈ℜ . U  represents a new truncated left-sided singular matrix with 
k  indicating the amount of vectors associated with the subset of strongest singular values. In this work, 5 
singular values are considered ( 5k = ). The vectors of the left-sided singular value matrix, 

1 1[ , ,..., ]kU u u u= , also called principal component vectors, are vertically concatenated to form the feature 

vector used for classification: 1[ ,..., ]T T T
ks u u= . The formed vector s  is the feature vector of one data 

domain and one radar node. In the case of feature fusion across the nodes in the network, the feature vectors 
from four ( 4d = ) introduced data domains and up to five radar nodes ( 5n ≤ ) are concatenated, as 

1, 1 4, 1 1, 5 4, 5[ , , , , , , ]T T T T T
d n d n d n d nS s s s s= = = = = = = ==    , and forwarded to the classifiers [20].  
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Figure 3: Singular values of the 4 data domains used for range-Doppler (RD), micro-Doppler 
spectrogram (mD spec.), FSST spectrum and the range-time (RT). A number of 5k = singular 

values were selected to capture the features of interest and generate the truncate left-sided 

singular component vectors forming the principal matrix, i kU ×∈ℜ .  

 
3.2 Feature extraction using two-dimensional (2D) Principal Component Analysis (PCA) 

In addition to one-dimensional Principal Component Analysis, two-dimensional (2D) Principal Component 
Analysis (PCA) is also employed to extract the features of the domains RD, mD spec., FSST spec., and RT. 
To construct the final feature vectors v  of each domain, the total covariance matrix, H , is computed for 
each data domain and each radar as 

           ( ) ( )

1

1 ( ) ( )m T m

m

M

H X X X X
M =

= − ⋅ −∑  

HQ Q= Λ      (2) 

 1H Q Q−= Λ  

m  indicates the image sample in the set M , with i iX ×∈ℜ  the mean image ( )

1

1 M
m

m
X X

M =

= ∑ .  Eigen-

decomposition on the covariance matrix H  is applied to compute the eigenvector matrix Q , and eigenvalue 
matrix Λ , the latter containing the eigenvalues λ . The k strongest eigenvalues 1[ ,..., ]kλ λ  are identified by 
finding the “knee” or “elbow” to determine the number of sufficient eigenvectors such as 

1 2[ , , , ]kQ q q q=   forming i kQ ×∈ℜ . The set of feature vectors is obtained  by projecting each image 
( )mX  on the matrix of truncated eigenvectors Q , as Y QX= , such that Y equals the matrix of projected 

feature vectors and is of dimension, i kY ×∈ℜ . The vectors constituting matrix Y  are called the principal 
component vectors of the sample image ( )mX . Finally, the principal component vectors are concatenated to 
obtain the feature vector 1ikv ×∈ℜ . As for 1D PCA, the feature vectors of all domains ( 4d = ) and up to 
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five radar nodes ( 5n ≤ ) are concatenated, as 1, 1 4, 1 1, 5 4, 5[ , , , , , , ]T T T T T
d n d n d n d nS s s s s= = = = = = = ==    , and 

forwarded to the classifiers [21].  

3.3. Classification and fusion 

Data fusion is investigated in this paper using feature fusion (‘early fusion’) and decision fusion (‘late 
fusion’), as the flow graph in Figure 4 shows. Let the data domain be the image matrix, i iX ×∈ℜ . The 
extracted feature vectors are of dimension 1ikv ×∈ℜ , with k  the selected principal components. The 
introduced 4 domains, d , are RD, mD spec., FSST spec., and RT, increasing the feature vector length to 

1ikd
allv ×∈ℜ per radar node. Then, decision fusion can be applied on each node using the feature vector alls  

of size 1ikd × . This classification approach might be even suitable for decentralized systems, where an 
initial classification is performed locally at each node, and only the decisions and related confidence levels 
are passed and shared among different nodes.   

It will be assumed that the classifier predicts the probability of each class as ˆclp , according to the 
information of the feature vector alls  and the training procedure. In principle, the last layer of a classifier 

determines predicted class by calculating the highest probability as [ ]ˆ ˆcl
cl

y argmax p= , with ŷ  the predicted 

class and cl the classes. Beforehand, decision fusion can combine the prediction probabilities of each node 
n  to have an overall decision from the radar network, as:  

( )( ) ( ) ( )
,

1

ˆ 1ˆ ˆ
N

m m m
cl cl cl n

n
Mean p pP

N =

= = ∑  (3) 

where N indicates the set of the radar nodes and m  the sample index. The predicted class is computed as 
ˆ ˆ

cl
cly argmax P =   . The sample superscript ( )( ) m  will be neglected for better readability.   

For decision fusion, the feature vector grows by the number ( 5n ≤ ) of radars in the network, 1ikdnV ×∈ℜ . 
While the prediction of classes follows the same approach as for feature fusion, the combination of 
probability vectors, as shown in Eq (3) is not needed here, since only one classifier is used for classification, 
as shown in Figure 4. 



 Exploiting Radar Data Domains for Classification with Spatially Distributed Nodes 

STO-MP-SET-312 10 - 7 

 

 

 

 

Figure 4: Flow graph with pipeline using feature fusion and decision fusion of the 5 radar nodes 
and 4 data domains considered in this paper. 

However, it should be noted that the prediction vector for each sample has the size of the total number of 
classes, instead of 1ikd ×  for decision fusion or even 1ikdn×  for feature fusion. It can be expressed as 

ˆ( ) ( ) ( ) ( ˆ )all cl cllength V length v length P length p=  . It is important to note that forwarding the feature 
vectors allv  of each radar to a centralized system to form V  can become computationally heavy and 
demanding in terms of communication bandwidth, especially if there are a lot of features to be considered. A 
proposed solution is the usage of decision fusion, which requires only the transmission of probability vector 
ˆclp  between the nodes. The trade-off is that feature fusion provides, on average, a higher classification 

accuracy [18] and can give more degrees of freedom in selecting different features from different nodes 
(‘feature diversity’). 

4.0 RESULTS 

Initial results are generated for feature fusion (‘early fusion’) and for decision fusion (‘late fusion’) across the 
used radars and data domains. These classification results are presented with the following input domains: 
range-Doppler (RD), micro-Doppler spectrogram (mD spec.), Fourier synchro-squeezed transform spectrum 
(FSST), and the range-time map (RT). Example images of sliding window instances of these domains are 
provided in Figure 2. 

The evaluated classifiers in this work are: 

• the decision tree (DT) classifier 

• the k-nearest neighbour (KNN) classifier {five neighbours, Euclidean distance}  

• the naïve Bayes  (NB) classifier 

• the support vector machine (SVM) {Gaussian kernel} 

Results are provided for the training accuracy, the validation accuracy when using an hold-out of 30% of the 
training data, and the leave one person out (L1Po) test for each individual participant of the training data. 

The first section focuses on feature fusion (early fusion) and decision fusion (late fusion) using 1D Principal 
Component Analysis (1D PCA), and the subsequent section covers 2D PCA in a similar fashion. 
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4.1 Using one-dimensional (1D) Principal component analysis 
This section contains the results for the application of feature fusion and decision fusion across the radar 
nodes and the data domains, after extracting features using 1D PCA. PCA is applied to the images that are 
extracted from a window of 200 samples (1.64s), as illustrated in Figure 1, with a down-sampled image size 
of 224 224× pixels and followed by singular value decomposition (SVD). The left-sided singular vectors 
are indicated as 224 kU ×∈ℜ , where k is the number of left-sided singular vectors associated with the highest 
singular values 1[ ,..., ]kσ σ . The singular vectors are vertically concatenated to obtain the feature vector 

224 1ks ⋅ ×∈ℜ . Feature fusion over domains and radar nodes is accomplished by concatenating the feature 
vectors s  for all five available nodes and for all four domains, resulting in a total feature vector 

224 k d n 1S ⋅ ⋅ ⋅ ×∈ℜ , with d and n indicating the amount of domains and nodes respectively. In this work, 5k = , 
4d = , and 5n ≤ , resulting in a maximum total feature vector of length 224 4 4 5 22400⋅ ⋅ ⋅ = . 

The results are displayed in Table 1 and in Figure 5, where the top grey part of Table 1 shows the accuracy, 
and the yellow bottom shows the average F1 score across all classes. In the table and figure, the performance 
for the various classifiers under evaluation is presented for varying combinations of radar nodes, and for all 
three evaluation approaches: Test, cross-validation, and L1Po.  

First, the full set of nodes is considered, indicated as R: 1,2,3,4,5. Here, the NB classifier performs worst in 
the training stage, whereas it achieves the highest L1Po results with an average F1 score of 46.4%, and the 
second-highest total accuracy (61.2%) after the KNN classifier (64.0%). Inspection of relevant confusion 
matrices reveals that the KNN classifier suffers from minority class classification, which is reflected in the 
difference between the accuracy and the F1 score.  

By decreasing the amount of utilised radar nodes, a performance degradation is expected. This degradation is 
demonstrated in the R:3 rows of the table, where a decrease of (46.4%  34.8%) for the L1PO NB average 
F1 score and of (61.2%  39.9%) in accuracy can be seen. Likewise, the decrease is also present for the 
other classifiers, though to a lesser extent. In general, the L1Po performance of SVM is inferior to the other 
tested classifiers. This is possibly attributable to an overfitting problem of the SVM classifier due to the 
unfavourable training data vs. feature vector length ratio, i.e. the relatively long feature vector with respect to 
the size of the available data samples  [22], [23].   

Table 1: Feature fusion accuracy and F1 score results using from one radar (radar node 3, 
indicated as, R: 3) up to all radars in the network, indicated as R: 1,2,3,4,5. The features are 

extracted with 1D PCA using 5 singular vectors from four domains: Range-Doppler (RD), micro-
Doppler spectrogram (mD spec.), Fourier synchro-squeezed transform spectrum (FSST), and the 
range-time map (RT). They are subsequently concatenated and forwarded to the classifiers. The 
tested classifiers are the decision tree (DT), k-nearest neighbour (KNN), Naïve Bayes  (NB), and 

support vector machine (SVM). 

Accuracy Training Cross validation 70/30 L1Po test 

Radar nodes DT KNN NB SVM DT KNN NB SVM DT KNN NB SVM 
R: 3 92.8 76.7 47.3 70.6 57.4 65.2 43.7 45.1 48.3 58.9 39.9 44.2 

R: 1,5 93.4 77.2 53.9 88.8 56.4 65.4 49.8 40.8 52.8 59.5 46.5 40.5 
R: 2,4 93.2 79.3 61.6 89.3 59.1 67.2 59.1 44.3 51.1 60.9 55.6 39.1 

R: 1,3,5 93.2 78.6 59.1 97.5 57.8 67.8 55.4 41.1 53.8 61.1 51.4 41.0 
R: 1,2,3,4,5 93.6 81.4 68.4 100.0 59.5 71.2 64.0 47.1 53.5 64.0 61.2 41.8 

F1 score Training Cross validation 70/30 L1Po test 

Radar nodes DT KNN NB SVM DT KNN NB SVM DT KNN NB SVM 
R: 3 86.9 62.6 42.5 62.1 41.2 45.6 38.5 26.8 31.6 33.2 34.8 23.2 
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R: 1,5 88.1 64.1 49.2 88.5 40.2 43.5 44.1 26.0 33.1 29.5 35.7 25.0 
R: 2,4 88.1 67.2 54.3 89.2 42.6 47.4 50.0 29.7 32.3 35.6 42.2 22.6 

R: 1,3,5 87.5 66.6 53.2 97.6 40.3 48.1 48.1 28.0 33.4 33.5 39.2 24.1 
R: 1,2,3,4,5 88.6 69.0 61.4 100.0 43.5 50.8 54.7 32.6 34.2 33.0 46.4 26.1 

 

 

Figure 5: Results using 1D Principal component analysis (1D PCA) with 5 singular vectors by 
applying early fusion (feature fusion) across all data domains and radar nodes. R: XX stands for 
the selected radar nodes, e.g., R: 3 indicates node 3; all nodes are indicated as R: 1,2,3,4,5. (a) 

shows the achieved accuracy and, (b) the average F1 score across all five classes, respectively. 

Table 2 and Figure 6 provide the classification results for the individual data domains of RD, mD spec. 
FSST, and RT using the full set of 5 radars in the network. The NB classifier with L1Po validation attains the 
best F1 score with 44.9% using the mD spec. domain, followed by the FSST domain with 42.1%. The 
highest L1Po accuracy is achieved by the KNN classifier with 57.1% using the RD domain and followed by 
the RT domain with 56.9%. From the F1 scores of the L1Po results, all data domains are suitable to use, with 
the overall best performance reached by the NB classifier. The SVM classifier may suffer again from 
overfitting as described earlier.   

Table 2: The accuracy and F1 score results of the individual data domains, RD, mD spec. FSST, 
and RT using the full set of 5 radars in the network. The features from each domain and radar 

are extracted using 1D PCA. Hence, the same features from each radar are vectorized and 
concatenated for the classifiers of DT, KNN, NB, and SVM. 

Accuracy Training Cross validation 70/30 L1Po test 

Datadomain DT KNN NB SVM DT KNN NB SVM DT KNN NB SVM 
Range Doppler 93.5 77.9 54.8 88.1 60.4 65.2 51.0 37.3 50.4 57.1 48.6 35.9 

mD spec. 91.2 75.3 56.8 69.3 58.8 57.1 55.1 48.2 53.9 53.6 53.7 48.3 
FSST 93.2 73.8 58.8 69.2 58.3 58.6 55.8 47.7 52.9 54.0 54.6 49.8 

Range Time 93.0 78.9 54.4 89.9 55.2 68.0 51.7 45.8 44.2 56.9 45.5 42.6 

F1 score Training Cross validation 70/30 L1Po test 

Datadomain DT KNN NB SVM DT KNN NB SVM DT KNN NB SVM 
Range Doppler 88.4 64.9 49.8 88.6 44.3 45.1 43.3 24.5 30.5 30.7 35.5 20.7 

mD spec. 86.6 58.5 51.9 59.1 42.4 38.0 45.1 29.6 30.4 31.1 44.9 29.4 
FSST 87.4 59.0 50.4 59.6 41.7 39.0 44.8 28.2 33.1 31.0 42.1 28.3 

Range Time 87.7 68.6 48.7 89.0 41.6 51.8 43.3 29.9 29.0 34.0 31.9 23.1 
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Figure 6: Results for individual data domain classification of RD, mD spec., FSST, and RT, using 
1D PCA (5 singular vectors) to extract the features and fuse the individual domains by applying 

early fusion (feature fusion) for the five radar nodes only (hence, not across data domains).  

Figure 7 shows the results for late fusion (i.e., decision fusion) across the class probability outputs of each 
classifier. Here, the full set of radars is used. Again, NB with a L1Po F1 score of 35.5% performs best, while 
the best L1Po accuracy is achieved by the KNN classifier with 57.1%, with the results seen in Figure 7. The 
KNN classifier again performs best for the majority classes of (1) Walking, and (2) Stationary condition, 
whereas it suffers for the minority classes of (3) In-place activities, (4) Standing up from the ground, and (5) 
Falling down. This explains the discrepancy between the relatively high accuracy and the comparatively low 
F1 scores for the KNN classifier in the specific imbalanced dataset used in this study. 

 

Figure 7: Results for 1D PCA with 5 singular vectors by applying late fusion (decision fusion) 
across the class probabilities of the individual data domains for the full set of 5 radars. 

 
In summary, this section shows the results for feature fusion, individual data domain classification, as well as 
decision fusion across the individual domains. Feature extraction is accomplished by means of 1D PCA of 
the four domains, a common feature extraction method, utilizing only the left-sided singular vectors. The 
overall best performance is attained when evaluating the L1Po performance by using feature fusion applied 
on all domains and radar nodes. Specifically, the KNN classifier reached an accuracy of 64%, and the NB 
classifier achieves a 44.9% F1 score. 

4.2 Using two-dimensional (2D) Principal component analysis 
As in the previous section, results for using feature fusion and decision fusion across the radar nodes and the 
data domains are presented here. Feature extraction is this section is accomplished using two-dimensional 
principal component analysis (2D PCA) based on matrix eigen-decomposition. As before, 2D PCA is 
applied to the images, as illustrated in Figure 2, with a down-sampled image size of 224 224× pixels. The 
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feature matrix, 224 kY ×∈ℜ , is extracted from the total covariance matrix, H , where k is the number of 
selected principal component vectors, associated with the highest eigenvalues 1[ ,..., ]kλ λ  after eigenvalue 

decomposition. The eigenvectors are vertically concatenated to obtain the feature vector 224 1ks ⋅ ×∈ℜ . 
Feature fusion over data domains and radar nodes is accomplished by concatenating feature vectors v for all 
five available nodes and for all four domains, resulting in a total feature vector 224 k d n 1S ⋅ ⋅ ⋅ ×∈ℜ , with d and n 
indicating the amount of domains and nodes respectively. In this work, 5k = , 4d = , and 5n ≤ , resulting 
in a maximum total feature vector of length 224 4 4 5 22400⋅ ⋅ ⋅ = [24].  

The results discussed here are presented in Table 3 and Figure 8, where the top grey part of the Table 3 
displays the accuracy, and the yellow bottom shows the average F1 score across all classes. In the table and 
figure, the performance for the various classifiers under evaluation is presented for varying combinations of 
radar nodes, and for all three validation approaches.  

The best L1Po performance is achieved through the utilization of the full set of 5 nodes, indicated as R: 
1,2,3,4,5, by the NB classifier with a 48.3% F1 score. It can be seen that the NB classifier provides the best 
L1Po accuracy for all node subsets, with the exception of the single R:3 subset. The maximum achieved 
accuracy is 62.3%, for the R: 1,3,5 subset. 

As in the previous section, a performance degradation is expected by decreasing the amount of radar nodes. 
As an example, the F1 score results for the NB classifier degrades from 48.3% to 22.9% in the L1Po test. 
The comparatively poor L1Po performance of the SVM classifier seems to suggest that the SVM classifier 
over-fits in this scenario, and that the feature vectors are too large in relation to the number of samples 
available in the dataset [22], [23].  

Table 3: 2D PCA feature fusion accuracy and F1 score results using from one radar (radar node 
3, indicated as, R: 3) up to all 5 radars in the network indicated as, R: 1,2,3,4,5. The features are 
extracted using 2D PCA with 5 principal component vectors from four data domains, namely, 

range-Doppler (RD), micro-Doppler spectrogram (mD spec.), Fourier synchro-squeezed 
transform spectrum (FSST), and the range-time map (RT). The tested classifiers are the decision 

tree (DT), k-nearest neighbor (KNN), Naïve Bayes  (NB), and support vector machine (SVM). 

Accuracy Training Cross validation 70/30 L1Po test 

Radar nodes DT KNN NB SVM DT KNN NB SVM DT KNN NB SVM 
R: 3 95.2 93.2 57.8 100.0 70.4 85.9 56.6 85.2 30.9 25.6 24.3 23.0 

R: 1,5 96.7 94.2 68.6 100.0 75.1 86.3 66.2 88.5 53.2 60.6 60.8 29.3 
R: 2,4 96.3 94.6 67.1 100.0 77.4 89.2 66.5 90.0 24.1 28.8 39.0 33.2 

R: 1,3,5 96.8 95.1 71.2 100.0 76.1 89.8 69.9 90.6 39.9 43.2 62.3 19.8 
R: 1,2,3,4,5 96.9 94.9 72.2 100.0 80.4 89.5 71.3 92.7 37.4 29.5 60.4 34.2 

F1 score Training Cross validation 70/30 L1Po test 

Radar nodes DT KNN NB SVM DT KNN NB SVM DT KNN NB SVM 
R: 3 91.4 90.5 48.8 100.0 58.0 79.1 47.8 80.4 21.5 16.3 22.9 16.0 

R: 1,5 94.5 92.2 56.8 100.0 64.0 81.3 55.0 86.0 33.3 39.5 40.6 22.5 
R: 2,4 94.1 92.9 56.7 100.0 67.7 85.5 56.2 87.7 17.3 21.8 35.2 20.1 

R: 1,3,5 94.6 93.5 60.8 100.0 66.1 86.0 59.2 88.1 29.9 28.9 47.7 15.5 
R: 1,2,3,4,5 94.7 93.3 62.3 100.0 70.9 85.5 60.5 90.5 24.3 21.7 48.3 20.8 
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Figure 8: Results using two-dimensional (2D) PCA with 5 principal vectors by applying early 
fusion (feature fusion) across all domains and radar nodes. R: XX stands for the selected radar 
nodes, e.g., R: 3 indicates node 3; all nodes are indicated as R: 1,2,3,4,5. (a) shows the achieved 

accuracy and, (b) the average F1 score across all five classes, respectively. 

The classification matrices for the NB classifier are provided in Figure 9. Feature fusion is applied over all 5 
nodes and over all data domains. Inspection of these matrices reveals a strong imbalance between the 
majority classes (1) Walking and (2) Stationary, and the minority classes such as (5) falling. This imbalance 
can be considered natural for HAR problems, since a fall event firstly happens relatively infrequently, and 
secondly has generally a shorter duration than extended activities, such as walking. Nonetheless, instances of 
the walking class have been also wrongly classified as falling, which is unsurprising as the falling class in 
this dataset also includes falling from a walking motion. Thus, the transition between the classes is a smooth 
merging of one motion into the other, making it more difficult to classify activities based on fixed-length 
portions of data.  

 

Figure 9: The classification matrices using two-dimensional (2D) PCA with 5 principal vectors by 
applying early fusion (feature fusion) across all domains and 5 radar nodes are provided. The 
left matrix shows the achieved training results, the middle matrix the cross-validation results, 

and the right matrix the L1Po test results, respectively. The classes are: (1) Walking, (2) 
Stationary condition, (3) In-place activities, (4) Standing up from the ground, (5) Falling down. 

Feature fusion of five radars (See Table 1: R: 1,2,3,4,5) using 2D PCA with five and ten eigenvectors 
(indicated as 5 EV and 10 EV) is evaluated for different data domains, with results shown in Table 4 and 
Figure 10. The eigenvectors, also called principal components (PC), are those associated with the 10 highest 
eigenvalues. Looking at the F1 score in the L1Po test, the NB classifier again performs best with 48.2% 
using the FSST domain and features extracted from 10 PC. However, it should be noted that an increase 
from 5 to 10 PC enlarges the feature vector by a factor of two, which increases data load and computational 
complexity.  

Additionally, it is apparent that increasing the amount of PC from 5 to 10 for the mD spectrogram and FSST 
domain grants improvements in the order of 10% and 20%, respectively, whereas this increase results in 



 Exploiting Radar Data Domains for Classification with Spatially Distributed Nodes 

STO-MP-SET-312 10 - 13 

 

 

negligible changes for the RT and RD domain.   

Table 4: The accuracy and F1 score results using two-dimensional (2D) PCA feature extraction 
of the individual data domains, namely, RD, mD spec., FSST, and RT by using the full set of 5 

radars in the network. The tested classifiers are DT, KNN, NB, and SVM for five and ten principal 
component vectors, indicated as 5PC and 10 PC in the table. 

Accuracy Training Cross validation 70/30 L1Po test 

Datadomain DT KNN NB SVM DT KNN NB SVM DT KNN NB SVM 

Range Doppler; 5 EV 95.6 95.0 71.9 100.0 72.4 89.1 71.1 93.0 45.6 58.7 58.0 51.3 
Range Doppler; 10 EV 95.7 95.7 72.2 100.0 72.5 89.9 72.1 94.1 51.5 56.3 59.3 53.7 

mD spec.; 5 EV 95.4 93.5 68.3 100.0 72.4 87.0 68.0 78.9 23.4 28.8 39.2 20.4 

mD spec.; 10 EV 96.0 94.1 69.8 100.0 73.0 87.4 68.2 66.4 25.2 29.0 49.6 20.2 
FSST; 5 EV 95.2 92.6 66.9 98.5 71.2 85.0 67.0 71.7 35.9 37.5 38.4 28.6 

FSST; 10 EV 95.2 92.7 69.0 100.0 71.2 85.0 67.6 62.3 43.8 32.3 59.2 32.0 
Range Time; 5 EV 96.2 94.0 66.3 100.0 78.2 87.7 65.4 84.9 40.0 44.4 58.4 44.1 

Range Time; 10 EV 95.9 93.7 65.3 100.0 74.7 87.1 64.4 73.9 48.3 45.9 58.0 43.8 

F1 score Training Cross validation 70/30 L1Po test 

Datadomain DT KNN NB SVM DT KNN NB SVM DT KNN NB SVM 

Range Doppler; 5 EV 92.3 93.4 60.3 100.0 60.7 86.0 58.4 91.6 31.0 39.7 42.6 34.3 
Range Doppler; 10 EV 93.0 94.8 62.3 100.0 59.9 86.3 59.2 93.0 32.6 38.9 43.2 36.5 

mD spec.; 5 EV 91.9 90.7 58.1 100.0 60.9 81.0 57.5 71.2 15.5 22.3 31.0 14.4 

mD spec.; 10 EV 93.2 92.5 60.9 100.0 60.1 81.5 56.2 49.7 19.5 24.2 41.0 14.3 
FSST; 5 EV 91.2 89.5 55.5 98.4 58.8 78.0 55.9 60.9 23.2 25.7 28.7 17.0 

FSST; 10 EV 92.4 90.3 58.4 100.0 59.0 78.3 54.5 46.3 28.4 23.6 48.2 19.6 
Range Time; 5 EV 93.6 91.6 54.2 100.0 70.0 83.2 52.3 82.0 28.4 32.7 42.3 33.1 

Range Time; 10 EV 93.4 91.9 53.5 100.0 64.3 81.5 50.1 67.1 32.6 32.4 41.3 32.1 
 

 

Figure 10: Results using the individual data domain classification of RD, mD spec., FSST, and 
RT, with 2D PCA with five and ten eigenvalues (5 EV and 10 EV in the figure) to extract the 

features. The individual data domains of the network are fused by applying early fusion (feature 
fusion) for the five radar nodes only (not across domains). (a) shows the achieved accuracy and, 

(b) the average F1 score across all five classes, respectively. 
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Figure 11 shows the accuracy and average F1 score results using late fusion for the four classifiers. The 
evaluation strategy again consists of training, cross validation, and L1Po. The best L1Po evaluation is again 
achieved by the NB classifier (F1 score: 42.6%, accuracy: 58%), followed by the KNN classifier (F1 score: 
40.2%, accuracy: 58%), both evaluated across the four domains of RD, mD spec., FSST and RT. The test is 
conducted with the first five principal vectors, indicated as 5EV. 

 

Figure 11: Results using 2D PCA with 5 eigenvectors by applying late fusion (decision fusion) 
across the class probabilities of the individual domains for the full set of radars. (a) shows the 

achieved accuracy and, (b) the average F1 score across all five classes, respectively. 

5.0 CONCLUSIONS AND FUTURE WORK 

This paper investigates radar network sensor fusion architectures using outputs from four selected data 
domains, the range-Doppler, the micro-Doppler spectrogram, the FSST spectrum, and the range-time map. 
The considered application is human activity classification. However, the problem of finding the best fusion 
methods for the possible radar data representation jointly with the number of nodes in the radar network 
remains open. 

In this paper, the best results among all methods are achieved by performing 2D PCA feature extraction and 
applying feature fusion (‘early fusion’) across all data domains and all 5 radar nodes, yielding 48.3% F1 
score using the naïve Bayes  (NB) classifier. Furthermore, 2D PCA is shown to have the advantage of a fast 
total covariance matrix computation, compared to SVD performed for each sample image in the case of 1D 
PCA. Despite the computational differences, 1D PCA results are comparable, with an average F1 score of 
46.4%. The best results using decision fusion (‘late fusion’) are achieved by using 2D PCA and the NB 
classifier, with an F1 score of 42.6%. It is important to highlight the challenging nature of the data in this 
dataset, namely that the sequences of human activities are collected in a continuous manner and along 
unconstrained trajectories. This can explain the lower classification results with respect to other studies in the 
literature in the same context. Additionally, the classifiers employed in this paper are chosen for their relative 
simplicity, rather than resorting to state of the art neural networks that are expected to yield the highest 
performance. This choice is motivated by the intent to emphasize differences in data fusion techniques, 
rather than classifier architectures. 

Even though feature fusion is demonstrated to enhance classification performance, it has the disadvantage of 
forwarding the entire extracted feature vector to a centralized unit for classification. Depending on the 
number of principal components or other classification features, the data load could become significant and 
require communication resources not necessarily affordable, especially in a long-range situational awareness 
scenario. As an example, a single domain and a single radar in this work already result in a feature vector 
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with 1120 elements. In the case of decision fusion, the classification can be performed close to each radar 
node in the network and would not require a substantial data transfer to a centralized processing unit. 
Typically, only the class prediction vector will be forwarded, with a size equal to the number of classes in the 
data set, e.g. 5 scalar values per sample for the demonstrated case. However, the drawback of decision fusion 
is the loss of degrees of freedom in combining and selecting different features in the data from different radar 
nodes (‘feature diversity’). This, together with even lower-level fusion at signal level, could provide better 
classification results. Hence, an open problem remains in finding the best strategies for a given application 
and radar network. 
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